If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9b^2-30b-20=0
a = 9; b = -30; c = -20;
Δ = b2-4ac
Δ = -302-4·9·(-20)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-18\sqrt{5}}{2*9}=\frac{30-18\sqrt{5}}{18} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+18\sqrt{5}}{2*9}=\frac{30+18\sqrt{5}}{18} $
| 5y-6+3=7 | | Y=2x^+80x+350 | | 34+8x=90 | | 18=8+n | | (m+2)(m+3)=(m=2)(m-2) | | 9x+12=28+5x | | 6x+10=22+5x | | 1=n-5 | | 5c^2-10c-1=0 | | 12x+18=15x | | 2/9x+12=4/9x-8 | | 0=4x(2x-10) | | -19-v=-22 | | c÷11=2 | | 6.4x-1.3=24.3 | | 3=2/e | | x-(-9)=28 | | 169+Y2+-26y=0 | | 2+2(x-8)=3-3(x-9) | | 5t=6=21 | | 6z+4=9z-5 | | r+19/5=6 | | (3x+10)=30 | | -4x(x-6)=2(7+3x) | | 3(d-4)-5=4 | | -42=w-5w-2 | | 2(2x-2)-2(3-5x)=6 | | 4x(x-6)=2(7+3x) | | -22=-7b+3b+6 | | 2y-1/2=3/2 | | 2(6x+1)-7=10x+5 | | 4.5(x)=13.5 |